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We present a predator–prey metaphysiological model, based on the available behavioral and

physiological information of the sigmodontine rodent Phyllotis darwini. The model is focused on the

population-level consequences of the antipredator behavior, performed by the rodent population, which is

assumed to be an inducible response of predation avoidance. The decrease in vulnerability is explicitly

considered to have two associated costs: a decreasing foraging success and an increasing metabolic loss.

The model analysis was carried out on a reduced form of the system by means of numerical and analytical

tools. We evaluated the stability properties of equilibrium points in the phase plane, and carried out

bifurcation analyses of rodent equilibrium density under varying conditions of three relevant parameters.

The bifurcation parameters chosen represent predator avoidance effectiveness ðAÞ, foraging cost of

antipredator behavior ðC 0
1Þ, and activity-metabolism cost ðC 0

4Þ. Our analysis suggests that the trade-offs

involved in antipredator behavior plays a fundamental role in the stability properties of the system. Under

conditions of high foraging cost, stability decreases as antipredator effectiveness increases. Under the

complementary scenario (not considering the highest foraging costs), the equilibria are either stable when

both costs are low, or unstable when both costs are higher, independent of antipredator effectiveness. No

evidence of stabilizing effects of antipredator behavior was found. & 2002 Elsevier Science (USA)
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1. INTRODUCTION

Since the pioneer works of Alfred Lotka and Vito
Volterra, theoretical models of food web dynamics have
developed considerably by incorporating essential bio-
63
logical details, which in turn may have dramatic
effects on the modeled population behavior. In the
domain of predator–prey models, one of such advances
was the explicit incorporation of negative feedback
(self-limitation). This approach attempts to account for
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intra-specific competition among individuals belonging
to the population of prey, or both prey and predators
(Leslie, 1948). Dampened oscillations converging to a
community steady state was a major population-level
novelty gained with the incorporation of self-limited
growth (see Berryman, 1992). Other paradigmatic
progress was achieved with the inclusion of features
related to the foraging behavior of predators, the so-
called functional responses or extraction functions. In
the original Lotka–Volterra predation model, predators
are assumed to be insatiable. However, assuming
individual consumption to be an asymptotic function
of prey density (Holling, 1959) results in models with
new static and dynamic properties, including the
occurrence of limit cycles (Murdoch and Oaten, 1975;
Harrison 1979).
Much less theoretical work has been done with regard

to the behavior of prey and its consequences on the
whole system (Sih, 1987a; Sih et al., 1988). One of the
most noticeable properties of prey is their capability to
face predation by means of several physiological,
morphological and behavioral strategies, which reduce
the probability of being detected, captured, killed or
ingested (Sih, 1987b).
A moderate number of theoretical works have dealt

with the reduction of prey vulnerability in the context of
predator–prey models, typically through the use of
spatial refuges. These safe places are often assumed to
protect either a fixed number of prey or a fixed
proportion of prey (Maynard-Smith, 1974). The familiar
conclusion that refuge use by the prey promotes stability
(Maynard-Smith, 1974; Murdoch and Oaten, 1975;
Harrison, 1979; see also McNair, 1986; K$rrivan, 1998)
is now being considered with caution, since it works only
for very simple models, and because empirical evidence
of such an effect is scarce (McNair, 1986). Indeed, the
occurrence of a constant number or a constant propor-
tion of prey in refuge seems to be very unlikely in nature
(Sih, 1987a).
Ruxton (1995) considered another striking feature of

antipredator behavior, that is, an often reversible
response to predation risk. The inducible character of
the response precludes the existence of costs under
decreasing predation; otherwise the trait is expected to
be fixed (Harvell and Tollrian, 1999). The cost of
predation avoidance is commonly assumed to decrease
intrinsic growth rate (Sih, 1987a) through lowering
birth rate or through increasing background (non-
predation) mortality rate. From an individual point of
view, decreased birth rate as a result of refuge use could
be explained either through lowering foraging rate,
increasing metabolic loss, decreasing reproductive
effort, and=or decreasing mating success. On the other
hand, an increased background mortality rate could be
due to physiological stress derived from starvation,
crowding, or sub-optimal physical conditions in the
refuge.
There is an increasing concern about the topic of

‘‘inducible defenses’’ in ecology and evolution (see
Tollrian and Harvell, 1999) and this phenomenon seems
to be widely spread across taxa and ecosystems. Never-
theless, few theoretical papers have incorporated in-
ducible antipredator responses as an essential ingredient
in modeling trophic interactions. In this work, we focus
on the behavior of refuge use by a rodent population,
which is assumed to be an inducible mechanism of
predation avoidance. We consider that a decrease in
prey vulnerability (see Abrams and Walters, 1996) has
the associated costs of decreasing foraging and of
increasing metabolic loss.
To explicitly formulate the trade-offs in terms of

functional relationships between prey vulnerability and
biomass fluxes through foraging and metabolism, we
used a metaphysiological approach to modeling popula-
tion dynamics (Getz, 1991, 1993, 1994). The funda-
mentals of this approach are to model populations as a
single meta-organism characterized by its biomass
density, whose rate of change is governed by processes
related to resource extraction and conversion, and
whose rate of biomass loss depends on metabolic
expenditure and predator outflow. We designed and
analyzed a metaphysiological model of the sigmodon-
tine rodent Phyllotis darwini considering what is known
regarding the behavioral and physiological information
of this species. Our main goal was to explore the
population-level consequences of the predator-induced
behavior of refuge use by the rodent population, and
allowing for the occurrence of previously evidenced
trade-offs.

1.1. Biological Background

The populations of the leaf-eared mouse P. darwini
have been shown to be numerically dominant and
largely irruptive among the small mammal assemblage
of central-north Chile (Jimenez et al., 1992; Jaksic,
1997). P. darwini uses open scrubs as typical habitat,
it is an omnivore (feeding mainly on seeds and small
herbs), reproduces between September and January, and
has an average adult body mass of nearly 50 g (Meserve,
1981; Meserve and LeBouleng!ee, 1987; see also Jaksic,
1997). On the other hand, P. darwini seems to strongly
interact with owl predators (Meserve et al., 1996; Lima
et al., 2001).
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Recently, the population dynamics and demography
of P. darwini have been studied on the basis of time-
series analyses of a 14-year long survey in a semiarid
locality of central Chile. These studies indicate that the
population in this area is endogenously regulated by
direct and delayed density dependence (Lima and Jaksic,
1998a, b; Lima et al., 1999a). The interaction between
exogenous forcing variables such as precipitation and
endogenous dynamics, has a significant effect on
population dynamics (Lima and Jaksic, 1999b; Lima
et al., 1999a, b, 2001).
The functional ecology of P. darwini is relatively well

known (Jaksic, 1997), specially with regard to the effects
of dietary composition, body size, ambient temperature
and behavior on the energetics of this rodent (Bozinovic
et al., 1988; Bozinovic and Rosenmann, 1989; Eben-
sperger, 1996; Bozinovic, 1997; Bozinovic and Novoa,
1997; Bozinovic et al., 1997; Canals et al., 1997).
Behavioral studies on P. darwini have revealed the
importance of predation risk on microhabitat choice
and feeding mode (Simonetti, 1989; V!aasquez, 1994,
1996).

1.2. Numerical Analyses

The analysis of the model was carried out on a
reduced form of the equations (Appendix A). We used
the software XPPAUT 4.0 (Ermentrout, 2000) to assess
the stability properties of the equilibrium points in the
phase plane, and to obtain bifurcation diagrams of the
equilibrium density of the focal rodent, after selecting
three parameters to vary.

2. THE MODEL

The basic equation behind the metaphysiological
modeling considers that the biomass X of the rodent
population changes as a function of the per capita (here
referred as per unit-biomass) rate of gross growth G, the
per capita metabolic expenditure M , and the per capita
mortality rate D:

dX
dt

¼ X ½G�M � D�: ð1Þ

The time unit of the model is 1 day, and the biomass is
expressed in grams. The physiological parameters are
commonly reported in other units, therefore we con-
verted them to grams by using 1 ml O2 ¼ 0:202 kJ for
respiration processes (Pitts and Sissom, 1979) and 1 g of
mouse ¼ 6:281 kJ (Gorecki, 1965; Kaufman et al.,
1975).

2.1. Rate of Gross Growth

Rate of gross growth is described here as the
conversion function xC of food ingestion IðX Þ, weighted
by the digestive efficiency xA:

GðX Þ ¼ IðX ÞxAxC : ð2Þ

For simplicity, xC is held constant, but it would be
used in a more complex expression instead. Regarding
the ingestion function, we used a generalized Holling-
type with self-interference among consumers (Getz,
1984),

GðX Þ ¼
gRl

bl þ ðgX Þl þ Rl
xAxC ; ð3Þ

where parameter g is the maximal ingestion rate per
unit-biomass when the resource density R tends to
infinity, b is the half-saturation parameter, g is the self-
interference term, and the exponent l determines the
presence or absence of an inflexion point in the curve.
Whenever l ¼ 1, the function is a Holling type-II with
self-interference (attributed to Beddington, 1975; DeAn-
gelis et al., 1975), whereas the curve is a Holling type-III
when l > 1.

2.2. Metabolic Expenditure

The per unit-mass metabolic expenditure defined in
Eq. (4) has two additive components: the resting
metabolic rate ðmRÞ and the activity metabolic rate
ðmAÞ. Although it is possible to consider the specific
dynamic action (metabolic loss due to digestive activity,
Grodzinski and Wunder, 1975) as a third component,
this loss was implicitly incorporated into the conversion
costs for simplicity (Eq. (3)):

M ¼ mR þ mA ð4Þ

with

mA ¼ oðmM � mRÞ: ð5Þ

In other words, the currency invested in activity
metabolism (i.e., for locomotion, food searching,
escape) is assumed to be a fraction o of the metabolic
scope (defined herein as SmM � mR). mM is the maximum
metabolic capacity of an average individual, and mR
represents the energy allocated to thermoregulation.
Thus, physiological thermoregulation is incorporated as
a first priority in the energy-allocation ‘‘decision’’, as
widely accepted for small mammals (Wunder, 1978; see
also Bozinovic and Merritt, 1991).



FIG. 2. Graphical representation of Eq. (7) relating allocation to

activity metabolism and vulnerability. Since activity expenditure

increases with antipredator behavior, it is a decreasing function of

vulnerability, with maximum o0 and minimum o1. The larger the

differences between o0 and o1 the higher is the metabolic cost, and

vice versa. Vo is a shape parameter that determines the slope of the

curve when V tends to zero.
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2.3. Antipredator Response

Field and experimental evidence (Simonetti, 1989;
V!aasquez, 1994, 1996) suggest that P. darwini reacts to
predation risk by means of changing its microhabitat
use so as to minimize exposure to predators (mainly
owls). Therefore, we assumed that prey vulnerability
decreases with increasing predator density, from unity to
a level Va, as an effect of prey’s antipredator behavior,
according to the following function:

V ðP Þ ¼
1� Va

1þ ðP=PuÞ
z þ Va: ð6Þ

Equation (6) allows us to model prey vulnerability as
a decreasing function of predator biomass ðP Þ, and its
shape being either hyperbolic ðz ¼ 1Þ, sigmoid ðz > 1Þ or
constant ðz ¼ 0Þ. The value of z (if more than 1) defines
the abruptness of the curve, which should be large if an
on=off response takes place; Pu indicates the critical
region of P where the antipredator response is induced
(Fig. 1).

2.4. Trade-off between Vulnerability and
Metabolic Loss

Changes in vulnerability as a response of predator
density operate through modifications in habitat selec-
tion and foraging behavior, among others. Therefore,
we considered an associated effect of vulnerability on
FIG. 1. Graphical representation of prey vulnerability (Eq. (6)) as

a function of predator abundance. Three curves are shown for different

values of parameter z. The inflexion point (with z > 1) is located at

P ¼ Pu. Parameter Va sets the minimal vulnerability level when

predator abundance is very high, thus being a measure of the

effectiveness of the antipredator behavior.
activity metabolism. We formulated this trade-off as
follows:

oðV Þ ¼
V ðo1 � o0Þ

Vo þ V
þ o0: ð7Þ

Equation (7) represents the fraction of metabolic
scope (see Eqs. (4) and (5)) allocated to activity. This
fraction is made dependent on vulnerability, o1 and o0

being the limits when V tends to infinity and zero,
respectively. Parameter Vo controls the shape of the
curve (Fig. 2). V!aasquez (1994, 1996) showed that the
use of refuge by P. darwini increased its energy
expenditure, which means that vulnerability to preda-
tors and activity metabolism are inversely related, or
o15o0.

2.5. Trade-off between Vulnerability and
Foraging

Reducing vulnerability to predation involves the
associated cost of decreasing food consumption
(V!aasquez, 1994, 1996). As before, the simplest saturating
function to be used is

gðV Þ ¼
V ðg1 � g0Þ
Vg þ V

þ g0; ð8Þ

where g1 and g0 represent food consumption with
unlimited food availability, under maximal and minimal



FIG. 3. Graphical representation of Eq. (8) relating food

consumption (under unlimited food availability) to vulnerability.

Lowering vulnerability decreases consumption. Minimum and max-

imum values are given by g0 and g1, respectively. The larger the

differences between g1 and g0 the higher is the foraging cost, and vice

versa. Vg is a shape parameter that determines the slope of the curve

when V tends to zero.
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vulnerability, respectively. Parameter Vg controls the
shape of the hyperbolic function (Fig. 3).

2.6. Mortality Function

We used the same extraction function for both
predators and prey, that is, a generalized Holling-type
function with self-interference. Prey density is weighted
by its vulnerability to account for the primary effect of
antipredator behavior, which is to reduce predation loss.
Thus, the biomass of prey eaten is given by

XDðX ; P Þ ¼ P
fðVX ÞL

ðVX ÞL þ tL þ ðGP ÞL
; ð9Þ

where f is the limit when prey biomass tends to infinity,
t is the half-saturation parameter, and G is the self-
interference term. The value of L defines the curve as
being type II ðL ¼ 1Þ or type III ðL > 1Þ. By substituting
Eq. (6) into (9), we obtain the complete expression for
the mortality function:

DðX ; P Þ ¼
Pf
X

 
1þ ½tL þ ðGP ÞL�




"
Pz
u þ Pz

X ðPz
u þ PzVaÞ

#L1A
�1

: ð10Þ
Likewise, by using Eqs. (3), (6) and (8) we obtain

GðX ; P Þ ¼
RlxAxC

bl þ ðgX Þl þ Rl



ðg1 � g0ÞðPz

u þ PzVaÞ
Pz
uðVg þ 1Þ þ PzðVg þ VaÞ

þ g0

� �
ð11Þ

and if we consider Eqs. (4)–(7) we obtain

MðP Þ ¼ mR þ
ðo1 � o0ÞðPz

u þ PzVaÞ
Pz
uðVo þ 1Þ þ PzðVo þ VaÞ

þ o0

� �

 ðmM � mRÞ: ð12Þ

2.7. Equation of Predators

Since we were not interested in the physiological
variables of predators, we used a very simple equation
for their dynamics. We assumed the population growth
rate of predators to depend on prey extraction H ðX ; P Þ.
This principle of biomass conversion is widely accepted
in population models (Ginzburg, 1998).

dP
dt

¼ f ðH ðX ; P ÞÞP ; ð13Þ

where H ðX ; P Þ represents prey mortality per unit of
predator biomass, and it is defined according to Eq. (9)
as

H ðX ; P Þ ¼
X
P
DðX ; P Þ: ð14Þ

The non-linear conversion function used here (Getz,
1991) was

f ðH ðX ; P ÞÞ ¼ r 1�
k

H ðX ; P Þ

� �
; ð15Þ

where r represents the upper limit of conversion rate of
food extracted to growth, and k the level of food
extraction that allows population maintenance. Finally,
the predator dynamics was expressed as

dP
dt

¼ Pr 1�
kP

XDðX ; P Þ

� �
: ð16Þ

3. RESULTS AND DISCUSSION

The resulting model (Eqs. (10), (11) and (12) into (1)
and (16), see also Tables I and II for a summary of the
model components) was reparameterized. New state
variables were defined as p ¼ P=Pu and x ¼ gX=N1=l,
where N ¼ bl þ Rl, and the equations recasted in the
equivalent 14-parameter form (see Appendix A for



TABLE I

Variables and Functions of the Model

Symbol Short definition Argument Units

(I) Variables

t Time d

X Population size of prey g

P Population size of predator g

(II) Functions

G Per capita gross population growth rate gðV ðP ÞÞ;X d�1

M Per capita metabolic loss AðoðV ðP ÞÞÞ d�1

D Per capita death rate P ;X ; V ðP Þ d�1

g Maximal ingestion rate of prey V ðP Þ d�1

mA Activity expenditure oðV ðP ÞÞ d�1

V Vulnerability to predation P dim. less

o Fraction of S allocated to activity metabolism V ðP Þ dim. less.
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details)

dx
dT

¼ x




Aþ p z

B1 þ pz
þ C1

� 	
1

1þ xl
� C5

Aþ p z

B2 þ pz
þ C4

� 	

�
C7p
x

1þ C6
1þ p z

xðAþ pzÞ

� 	L

ðK2 þ pLÞ

" #�1
2
66664

3
77775;

ð17aÞ

dp
dT

¼ pC9 1� K5
1þ pz

xðAþ p zÞ

� 	L

ðK2 þ pLÞ

" #
: ð17bÞ

The points ðx;pÞ ¼ ð0; 0Þ and ðx0; 0Þ, where

x0 ¼
A=B1 þ C1

C5ðA=B2 þ C4Þ
� 1

� 	1=l

ð18Þ

can be shown to be equilibrium solutions to Eq. (17a,b).
There were also non-zero equilibrium points in

the first quadrant which satisfy the transcendental
equations:

1� K5
1þ p z

xðAþ pzÞ

� 	L

ðK2 þ pLÞ ¼ 0 ð19Þ

and

Aþ pz

B1 þ pz
þ C1

� 	
x

1þ xl

� C5
Aþ p z

B2 þ pz
þ C4

� 	
�

fC7p
k

¼ 0; ð20Þ
that is,

x ¼
1þ p z

Aþ pz

� 	
½K5ðK2 þ pLÞ�1=L; ð21Þ

x
1þ xl

¼ C5
Aþ p z

B2 þ p z
þ C4

� 	
þ

fC7p
k

� 	
Aþ p z

B1 þ p z
þ C1

� 	�1

: ð22Þ

For analysis, three parameters were selected accord-
ing to their ecological relevance while all the others were
assumed to be fixed. The selected parameters were

A ¼ V �1
a ;

C1 ¼
g0

g1 � g0

Vg þ Va
Va

and

C4 ¼
Vo þ Va

Vaðo1 � o0Þ
mR

mM � mR
þ o0

� 	
:

Parameter A is interpreted as representing predator
avoidance effectiveness, since lower values of Va mean
lower vulnerability to predation under high predator
density. Parameter C1 represents foraging effectiveness
under reduced vulnerability, since large values of g0
indicate that foraging remains closer to the maximum,
under a fixed availability of resources. On the other
hand, the absolute value of C4 (which takes negative
values) is directly related to resting metabolic rate ðmRÞ
of the animals, and inversely related to activity savings
under reduced vulnerability. Thus, the greater the
foraging and activity costs, the lower is the value of C1

and the greater that of C4, respectively. In order to
better interpret the results, we rescaled C1 and C4 to



TABLE II

Parameters of the Model

Symbol Short definition Values Ref Units

R Food availability 5
 104–3
 105 5 g

b Half-saturation parameter of prey > 0 0 g

l Functional response exponent of prey 51 0 dim.less

xA Digestive efficiency 0.6 4 dim.less

xC Conversion efficiency 0–1 0 dim.less

g Self-interference coefficient of prey 50 0 dim.less

mR Specific resting metabolic rate 0.098–0.53 1 d�1

mM Specific maximal metabolic rate > 0:53 2,3 d�1

Va Vulnerability of prey under high predator density 0–1 0 dim.less

Pu Predator density threshold for change in prey vulnerability > 0 0 g

z Abruptness of the vulnerability response to predation risk 50 0 dim.less

o0 Fraction of S allocated to activity metabolism under high predation risk 0–1 0 dim.less

o1 Fraction of S allocated to activity metabolism under no predation risk 0–1 0 dim.less

Vo Shape controller of o in response to V Va � 1 0 dim.less

g0 Food-satiation level with high predation risk 0� g1 0 d�1

g1 Food-satiation level with no predation risk 0.1–0.22 4 d�1

Vg Shape controller of g in response to V Va � 1 0 d�1

f Maximal ingestion rate of predators 0.14–0.21 5 d�1

t Half-saturation parameter of predators > 0 0 g

L Functional response exponent of predators 1–2 0 dim.less

G Self-interference coefficient of predators 50 0 dim.less

r Maximal per capita growth rate of predators 0.0035–0.0045 5 d�1

k Per capita killing rate of prey needed for population maintenance of predators 0.05–0.1 5 d�1

Note. All processes scaled to 1 ha: Data sources (Ref) as follows: (0) derived from model’s assumptions and constraints; (1) Bozinovic

and Rosenmann (1988); (2) Bozinovic et al. (1988); (3) Bozinovic and Rosenmann (1989); (4) Bozinovic and Nespolo (1997); (5) Own data.

TABLE III

New Parameters of the Reparameterized Model, with the Values Used

for Numerical Analyses

Parameter Value

l 1.000

L 2.000

A 4.000

B1 2.000

B2 20.000

C1 5.000

C4 �3.000
C5 �1.000
C6 0.001

C7 0.910

C9 0.118

K2 100.000

K5 0.009

z 10.000
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C0
1 ¼ 1� C1=30 and C0

4 ¼ 1þ C4=10, respectively. In
this way, foraging cost and metabolic cost of activity
will be shown as positive numbers and larger values will
indicate larger costs. All other properties of the system
that could alter the value of parameters are assumed to
be constant.
Stability of the equilibria was explored using numer-

ical analyses, where the values of the three parameters
A; C0

1 and C0
4 were made to vary within plausible ranges

by considering the approximations shown in Table II.
Likewise, the fixed values used for the other parameters
are shown in Table III.
The stability analyses are graphically summarized in

Fig. 4. Three types of non-negative equilibria were
found in the system: stable points, saddle points, and
unstable points surrounded by at least one limit cycle, as
will be shown below. Saddle points were associated to
high values of C0

1, that is to say, when foraging cost of
predator avoidance is the highest. Under most para-
meter values, the equilibria are either stable or unstable.
Stable points occur along with low values of C0

4 (low
cost of metabolic activity) for almost any combination
of A and C0
1, except at high values of A and C0

1 (upper
right corner of graphs) where unstable points appeared.
For higher values of C0

4 (from 0.68 up), an unstable band



FIG. 4. Stability diagrams for the parameter space of antipredator effectiveness (parameter A, ordinate) and foraging cost (C0
1, abscissa). The

sequence of graphs resulted from the following values of metabolic cost (C0
4) from upper left to lower right: 0.50, 0.53, 0.56, 0.59, 0.62, 0.65, 0.68,

0.71, 0.74, 0.77, 0.80. The sections crossed by arrows and diamonds were chosen for subsequent bifurcation analyses.
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is found, which covers the entire range of A and an
increasing fraction of the C0

1 range as C
0
4 increases. Once

C0
4 reaches the maximum tested value (0.80), the whole

parameter space formed by A and C0
1 exhibits instability

of the equilibrium point with the exception of the lower
right corner (low A and high C0

1).
A more detailed inspection was carried out on a
subset of the parameter space by means of bifurcation
analysis. Bifurcation diagrams taking A as the control
parameter (also called bifurcation parameter) are shown
in Fig. 5. The diagonal line of positive slope represents
positive equilibrium density for rodents but zero for



FIG. 5. Bifurcation diagrams when antipredator effectiveness is the control parameter. The values of C0
1 and C0

4 are shown inside the graphs

(vertical arrows in Fig. 4): (thick line) stable fixed point; (thin continuous line) unstable fixed point; (dotted lines) maximum and minimum of stable

orbits.
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predators. This point is stable only at low values of A,
and it is a saddle point for most values of the control
parameter. The other equilibrium points shown in the
graphs are positive for both prey and predator popula-
tions; as shown in Fig. 4, such equilibria were stable at
low values and unstable at higher values of A. The
rodent population acquired the maximum stable equili-
brium density at the bifurcation point that separated the
zero-predator equilibrium from the non-zero one.
Accordingly, when the effectiveness of the rodent
antipredator response is poor or null, the rodents reach
a stable population density but their biomass increase is
too low to maintain the predator population. If prey
increase their antipredator effectiveness, a non-zero
predator density equilibrium is stable (before crossing
the Hopf bifurcation point) and the rodent biomass
stabilizes at non-maximum values due to the predation
pressure. After crossing a Hopf bifurcation, higher A
values promoted the occurrence of stable orbits or limit
cycles of increasing amplitude. The values of parameters
C0
1 and C0

4 affected both the position of the Hopf
bifurcation along the A-axis and the amplitude of the
stable orbits. Higher values of C0

4 restrict the stability of
the fixed point to low values of A and promote larger
amplitudes of limit cycles when they appear. Secondly,
smaller values of C0
1 exert an equivalent effect. Some

trajectories of both state variables through time are
shown in Fig. 6 for different values of A.
Hence, this analysis shows a destabilization effect of

realized antipredator behavior on the non-trivial equili-
brium point. This result contradicts the earlier paradigm
of a stabilizing effect of refuge use in the context of
simple models (Maynard-Smith, 1974; Murdoch and
Oaten, 1975; Harrison, 1979; Ives and Dobson, 1987).
Indeed, we performed further bifurcation analyses,
setting the parameter to values at which the system
exhibits a limit cycle when antipredator response is null.
Increasing the response (parameter A) did not stabilize
the equilibrium point in any case tested.
At this point, it will be useful to make clear our

concept of antipredator effectiveness, which refers to the
decrease in predation mortality rate as a consequence of
the performance of some defensive trait by the prey. The
exhibited defense makes the prey less likely to be
detected, captured, or handled by the predator, which
prevents its killing and consumption. In this sense,
effectiveness of prey antipredator behavior is a synonym
of the ineffectiveness of predators unless the prey
response would prevent the consumption by the
predator, but not the killing. In contrast, efficiency



FIG. 6. Trajectories of state variables through time with four levels of antipredator effectiveness (A). Other parameter values as in Fig. 5(i):

(continuous line) prey population; (dashed line) predator population.
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measures (e.g., Ives and Dobson, 1987) must incorpo-
rate the different benefits and costs of the prey and
predator performances. Hence, antipredator efficiency
of prey could not be the same as predator inefficiency
due to the particular trade-offs that influence each
population.
Figure 7 shows bifurcation diagrams when foraging

cost C0
1 is the control parameter. The diagonal

continuous straight line of negative slope indicates an
equilibrium point, in which the predator equilibrium
density is zero. Such a line is almost entirely composed
by saddle points, shown as thin (unstable) lines. Other
(non-straight) lines represent non-zero equilibrium
densities for both prey and predators. An evaluation
of the bifurcation diagrams shown in Fig. 7 shows both
stabilizing and destabilizing effects when C0

1 increases.
Under high A and low C0

4 values (Fig. 7(i)), the
equilibrium is stable for low and intermediate levels of
foraging cost. In such a region, the stable rodent
equilibrium density decreases with larger values of C0

1.
Under high levels of foraging cost the equilibrium is
unstable and stable orbits appear, which in turn exhibit
a decreasing amplitude as C0

1 increases. A more complex
situation appears in the neighborhood of the Hopf
bifurcation, since three equilibrium points were found
between C0

1 ¼ 0:756 and 0.764 (Fig. 8). Above the Hopf
bifurcation (which is at C0

1 ¼ 0:7637Þ, the upper and
lower coexisting equilibrium points are unstable with
both eigenvalues of the Jacobian matrix having positive
real parts; and the middle one is a saddle. The upper
point is stable below the Hopf bifurcation (Fig. 8).
Furthermore, two limit cycles exist between C0

1 ¼ 0:7631
and the Hopf bifurcation, the wider being stable
whereas the smaller being unstable (Fig. 7(i) and more
clear in Fig. 8). Although not analytically proved, the
numerical analysis indicates that this is a case of a
subcritical Hopf bifurcation (Strogatz, 1994). In the
region where the unstable orbit appears, this acts as a
boundary between two domains of attraction, inside
which all starting trajectories tend to the inner stable
point. If trajectories start outside the unstable orbit,
they reach a stable limit cycle. A similar result was
obtained with the use of high values of parameter C0

4

(Fig. 7(ii)), however, the amplitude of the stable limit
cycle was larger, and stable limit cycles also appeared
when the control parameter lies between C0

1 ¼ 0:378 and
0.569. Thus, conditions for stability are more restricted
than in the previous case. Under intermediate values of
A (Fig. 7(iii) and 7(iv)), the bifurcation diagrams show
only one equilibrium point for any value of C0

1; in the
case of low values of C0

4 (Fig. 7(iii)) only one region of
stable orbits was noticed. These cycles appear within a
more restricted range of the control parameter (between
C0
1 ¼ 0:750 and 0.848) where two supercritical Hopf



FIG. 7. Bifurcation diagrams when foraging cost is the control parameter. The values of A and C0
4 are shown inside the graphs (horizontal arrows

in Fig. 4): (thick line) stable fixed point; (thin continuous line) unstable fixed point; (dotted lines) maximum and minimum of stable orbits; (open

circles) maximum and minimum of unstable orbits.
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bifurcations occur. The last diagram (Fig. 7(iv)) shows
one subcritical Hopf bifurcation at C0

1 ¼ 0:8257, below
which an unstable orbit coexists with an outer, stable
one. The second instability region was found between
C0
1 ¼ 0:378 and 0.569, same as in Fig. 7(ii). A global

evaluation of the bifurcation analyses summarized in
FIG. 8. A closer view of the region around the Hopf bifurcation of

Fig. 6(i): (thick line) stable fixed point; (thin continuous line) unstable

fixed point; (open circles) maximum and minimum of unstable orbits.

Stable orbit not shown.
Fig. 7 indicates that the equilibrium density of rodents
decreases with increasing foraging costs. The equili-
brium is mostly unstable under high values of C0

1, but
stable under low to intermediate C0

1 values if C
0
4 is low;

otherwise, we find a region of instability within a range
of values of C0

1. Examples of prey and predator
trajectories are shown in Fig. 9, illustrating the different
possibilities just mentioned.
Bifurcation diagrams are shown in Fig. 10 when C0

4,
representing activity metabolism cost of antipredator
behavior, is taken as the control parameter. As in the
previous figures, the upper (‘‘J’’ shaped) increasing lines
in Fig. 10(i) and 10(iii) indicate zero equilibrium density
of predators, where the unstable region of this line
corresponds to saddle points. The first graph shows the
behavior of equilibria; when low A and high C0

1 values
are used, and it reveals that a stable point exists for most
of the tested values of C0

4. Below C0
4 ¼ 0:583, the model

predicts a stable equilibrium density with zero density of
predators (see trajectories in Fig. 11). The stable
equilibrium is positive above that point for both
populations and its values increase slowly with C0

4.
Between C0

4 ¼ 0:744 and 0.760, we detected two stable
points separated by one unstable (saddle) point at each
C0
4 value (see also Fig. 11). These bifurcation properties



FIG. 9. Trajectories of state variables through time with four levels of foraging cost ðC0
1). Other parameter values as in Fig. 7(iv): (continuous

line) prey population; (dashed line) predator population.

FIG. 10. Bifurcation diagrams when metabolic cost is the control parameter. The values of A of C0
1 are shown inside the graphs (open diamonds

in Fig. 4): (thick line) stable fixed point; (thin continuous line) unstable fixed point; (dotted lines) maximum and minimum of stable orbits.

Ramos-Jiliberto, González-Olivares, and Bozinovic74
determine an abrupt and non fully-reversible change in
the equilibrium density of prey when the control
parameter is varied, a phenomenon known as hysteresis.
A supercritical hopf bifurcation point is found at
C0
4 ¼ 0:785, above which a stable orbit with rapidly

increasing amplitude appears (see the last graph of



FIG. 11. Trajectories of state variables through time with four levels of metabolic cost (C0
4). Other parameter values as in Fig. 10(i): (continuous

line) prey population; (dashed line) predator population. Upper-right and lower-left graphs show trajectories that started from different initial

conditions (IC) and that converged toward each of the two stable equilibrium points (see Fig. 10).
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Fig. 11). The equilibria are unstable under high values
of A and for most C0

4 values (Fig. 10(iii)). A first Hopf
bifurcation is found at C0

4 ¼ 0:136 where stable limit
cycles of exponentially increasing amplitude appear.
When C0

4 varies between 0.667 and 0.707 two unstable
points and a stable one coexists, the last having a steeply
increasing value as C0

4 increases. The second super-
critical Hopf bifurcation appeared at C0

4 ¼ 0:785, lead-
ing to a stable limit cycle. Figure 10(ii) and 10(iv) are
identical, and show the bifurcation of equilibrium
density of rodents when C0

1 ¼ 0:433, independent of
the value of A. The zero predator density equilibria (not
shown because of the scale of the graphs) were unstable
(saddle) points, similar to that of Fig. 10(iii). Figure
10(ii) and 10(iv) show the existence of a unique stable
point with C0

4 values below the supercritical Hopf
bifurcation at C0

4 ¼ 0:671, from which a stable orbit is
found that reaches a large amplitude relative to the
other analyzed cases.
The robustness of our results were corroborated by

varying the values of parameters not considered in
detail. We found no qualitative differences in the
predictions when each parameter was perturbed up to
50% below and up to its referential value. The only
differences detected corresponded to the precise position
of the equilibrium and bifurcation points.
4. CONCLUSION

The analysis of our predator–prey model revealed
that the relationship between stability of the non-trivial
community equilibrium and reduced predation vulner-
ability, through refuge use by the prey, is strongly
dependent upon the magnitude of the associated costs.
In particular, an increase in the metabolic cost of

antipredator behavior promotes destabilization of the
community equilibrium. The effect of increasing refuge
use (i.e., decreasing vulnerability) may induce destabi-
lization, depending on the values of other parameters.
When no cost of activity metabolism and foraging
exists, the equilibrium density of rodents remains stable
independent of the antipredator behavior exhibited by
the prey. If only a high foraging cost exists, the
likelihood of instability increases with the effectiveness
of antipredator response. When foraging cost is low or
absent, the stability depends on the magnitude of the
metabolic cost, but not on the antipredator effectiveness
of prey. These patterns are graphically summarized in
Fig. 12 with regard to the effect of increasing anti-
predator effectiveness, and under different combinations
of cost magnitudes. Stability is sensitive to variations in
antipredator effectiveness only when foraging cost is



FIG. 12. Main effects of increasing antipredator effectiveness on

the local stability of equilibrium points. The different scenarios are

combinations of low/medium/high levels of foraging and metabolic

costs.
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high. On the other hand, if we consider only low to
medium foraging costs, the equilibria are stable when
both costs are low, but unstable when both costs are
higher, independent of antipredator effectiveness. No
evidence of stabilizing effects of antipredator behavior
was found in the context of our approach.
Therefore, our analysis suggests that the trade-offs

involved in antipredator behavior play a fundamental
role in the stability properties of the system. The gross
growth rate is lower and metabolic losses are higher
when costs are high, which results in slower population
growth. This implies that the impact of predation is
stronger and dominates the system dynamics, and
promotes population oscillations (Berryman, 1999). In
a future paper, we will test these predictions by using
simpler population models with alternative structures
but retaining empirically founded cost–benefit relation-
ships.
In this study, we have constructed a non-structured

population model incorporating behavioral and eco-
physiological information of the leaf-eared mouse P.
darwini. We have shown that the stability properties of
the system include, for certain parameter ranges, stable
and unstable points as well as stable and unstable limit
cycles. Regarding the population outbreaks exhibited in
the field by P. darwini (Lima et al., 1999a), our model
shows both large-amplitude stable cycles and multiple
stable equilibrium points, which are the most accepted
alternative dynamical properties that explain the occur-
rence of outbreaks (Berryman, 1990).
Given the wide range of potential dynamics allowed
by this model, a useful progress would be to restrict the
parameter space to those values that maximize the
per capita growth rate of prey. Although such an
optimality approach (e.g., Ives and Dobson 1987)
imposes restrictive assumptions that do not necessarily
hold true for natural populations, it would be insightful
to compare the dynamic outcomes of adaptive versus
non-adaptive behavior.
Finally, the quantitative aspects of the model predic-

tions need to be more accurately assessed using other
tools if a greater correspondence between model and
nature is needed.

APPENDIX A

The proposed model obeys

dX
dt

¼ X ½G�M � D�; ðA1Þ

dP
dt

¼ f ðH ðX ; P ÞÞP : ðA2Þ

In which the rate of gross growth of rodents is given by
the function GðX Þ, expressed as

GðX Þ ¼
gRlxAxC

bl þ ðgX Þl þ Rl
ðA3Þ

noting that

lim G
R!1

ðX Þ ¼ lim
R!1

gxAxC
ðb=RÞl þ ðgX=RÞl þ 1

 !
¼ gxAxC :

and metabolic losses are defined as

MðP Þ ¼ mR þ mA ¼ mR þ oðmM � mRÞ: ðA4Þ

The antipredator response is assumed to be a function
of predator density in the form:

V ðP Þ ¼
1� Va

1þ ðP=PuÞ
z þ Va ðA5Þ

and substituting p ¼ P=Pu, we obtain the relation

V ðpÞ ¼
1� Va þ Vað1þ p zÞ

1þ p z
¼
1þ Vap z

1þ p z
: ðA6Þ

The trade-offs between vulnerability to predators and,
metabolism and foraging, respectively, are given by

oðV Þ ¼
V ðo1 � o0Þ

Vo þ V
þ o0; ðA7Þ
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gðV Þ ¼
V ðg1 � g0Þ
Vg þ V

þ g0: ðA8Þ

By substituting function (A6) into (A8), we obtain

gðpÞ ¼
ðg1 � g0Þð1þ p zVaÞ
1þ Vg þ p zðVg þ VaÞ

þ g0 ðA9Þ

factorizing by Va and by Vg þ Va, the above equations
become either

gðpÞ ¼
Vaðg1 � g0Þð1=Va þ p zÞ

ðVg þ VaÞðð1þ VgÞ=ðVg þ VaÞ þ p zÞ
þ g0 ðA10Þ

or

gðpÞ ¼
Vaðg1 � g0Þ
Vg þ Va

1=Va þ p z

ð1þ VgÞ=ðVg þ VaÞ þ p z

�

þ
ðVg þ VaÞg0
Vaðg1 � g0Þ

	
: ðA11Þ

Likewise, by substituting (A6) into (A7) and then
factorizing, we obtain

oðpÞ ¼
Vaðo1 � o0Þ

Vo þ Va

1=Va þ p z

ð1þ VoÞ=ðVo þ VaÞ þ p z

�

þ
ðVo þ VaÞo0

Vaðo1 � o0Þ

	
: ðA12Þ

According to Eq. (11) (see text), the per capita gross
growth rate of rodents is

GðX ; P Þ ¼
RlxAxC

bl þ ðgX Þl þ Rl



ðg1 � g0ÞðPz

u þ P zVaÞ
Pz
uðVg þ 1Þ þ P zðVg þ VaÞ

þ g0

� �
:

ðA13Þ

Substituting (A11) into (A13) yields

GðX ;pÞ ¼
Vaðg1 � g0Þ
Vg þ Va

1=Va þ p z

ð1þ VgÞ=ðVg þ VaÞ þ p z

�

þ
ðVg þ VaÞg0
Vaðg1 � g0Þ

	



RlxAxC

bl þ ðgX Þl þ Rl
:

ðA14Þ
Likewise, the metabolism function MðP Þ defined in
Eq. (12) (see text) can be set in a similar way to yield

MðpÞ ¼ mR þ
ðo1 � o0Þð1þ p zVaÞ
1þ Vo þ p zðVo þ VaÞ

þ o0

� 	

 ðmM � mRÞ ðA15Þ

and

MðpÞ ¼ mR þ
Vaðo1 � o0Þ

Vo þ Va



1=Va þ p z

ð1þ VoÞ=ðVo þ VaÞ þ p z
þ

ðVo þ VaÞo0

Vaðo1 � o0Þ

� 	


 ðmM � mRÞ: ðA16Þ

The mortality function (Eq. (10)) expressed in terms
of p yields

DðX ;pÞ ¼
pPuf
X

1þ
1þ p z

X ð1þ Vap zÞ

� 	L
"


 ðtL þ ðGPupÞ
LÞ

#�1
: ðA17Þ

In order to reduce the number of parameters, we define

E1 ¼
Vaðg1 � g0Þ
Vg þ Va

RlxAxC ; ðA18Þ

N ¼ bl þ Rl; ðA19Þ

A ¼
1

Va
; ðA20Þ

B1 ¼
Vg þ 1

Vg þ Va
; ðA21Þ

C1 ¼
g0ðVg þ VaÞ
Vaðg1 � g0Þ

ðA22Þ

to obtain

GðX ;pÞ ¼
Aþ p z

B1 þ p z þ C1

� 	
E1

N þ ðgX Þl
: ðA23Þ

Likewise, we reduced the number of parameters in the
metabolic function obtaining

MðpÞ ¼ mR þ E2
Aþ p z

B2 þ p z
þ C2

� 	
ðmM � mRÞ; ðA24Þ

where

C2 ¼
o0ðVo þ VaÞ
Vaðo1 � o0Þ

; ðA25Þ

E2 ¼
Vaðo1 � o0Þ

Vo þ Va
; ðA26Þ
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B2 ¼
Vo þ 1

Vo þ Va
: ðA27Þ

Furthermore, Eq. (A24) can be written as

MðpÞ ¼E2ðmM � mRÞ



mR

E2ðmM � mRÞ
þ

Aþ p z

B2 þ p z þ C2

� 	
; ðA28Þ

MðpÞ ¼ C3
Aþ p z

B2 þ p z þ C4

� 	
; ðA29Þ

where

C3 ¼ E2ðmM � mRÞ; ðA30Þ

C4 ¼
mR

E2ðmM � mRÞ
þ C2: ðA31Þ

The mortality function of prey (Eq. (A17)), can be
written as

DðX ;pÞ ¼
pPuf
X

1þ
GPu
Va

� 	L
1þ p z

X ð1=Va þ p zÞ

� 	L
"



t

GPu

� 	L

þpL

 !#
ðA32Þ

or

DðX ;pÞ ¼
pPuf
X


 1þ K1
1þ p z

X ðAþ p zÞ

� 	L

ðK2 þ pLÞ

" #
; ðA33Þ

where

K1 ¼
GPu
Va

� 	L

; ðA34Þ

K2 ¼
t

GPu

� 	L

: ðA35Þ

The above steps lead to the following equation for the
prey population:

dX
dt

¼ X

"
Aþ p z

B1 þ p z
þ C1

� 	
E1

N þ ðgX Þl

� C3
Aþ p z

B2 þ p z
þ C4

� 	
�
pPuf
X


 1þ K1
1þ p z

X ðAþ p zÞ

� 	L

ðK2 þ pLÞ

" #�1#
: ðA36Þ
If we redefine the state-variable X ¼ N 1=lx=g and
dX=dt ¼ N1=l=g dx=dt, we obtain

dx
dt

¼ x
E1

N
Aþ p z

B1 þ p z
þ C1

� 	
1

1þ xl

�

�C3
N
E1

Aþ p z

B2 þ p z þ C4

� 	
�

N
E1

pPufg
N1=lx




"
1þ K1

 
gð1þ p zÞ

N 1=lxðAþ p zÞ

!L

ðK2 þ pLÞ

#�1#
; ðA37Þ

dx
dt

¼ xE
Aþ p z

B1 þ p z
þ C1

� 	
1

1þ xl

�

�C5
Aþ p z

B2 þ p z
þ C4

� 	
�

C7p
x


 1þ C6
1þ p z

xðAþ p zÞ

� 	L

ðK2 þ pLÞ

" #�1#
ðA38Þ

in which

E ¼
E1

N
; ðA39Þ

C5 ¼ C3
N
E1

; ðA40Þ

C6 ¼
K1gL

NL=l
; ðA41Þ

C7 ¼
N
E1

Pufg
N1=l

: ðA42Þ

If the parameter and variable definitions given above
are considered, the predator equation given in the text as

dP
dt

¼ Pr 1�
kP

XDðX ; P Þ

� �
ðA43Þ

can be written as follows:

dp
dt

¼pr 1�
k
f

�


 1þ C6
1þ p z

xðAþ p zÞ

� 	L

ðK2 þ pLÞ

 !#
: ðA44Þ

Thus,

dp
dt

¼pr
f� k
f


 1�
k

f� k
C6

1þ p z

xðAþ p zÞ

� 	L

ðK2 þ pLÞ

" #
;

ðA45Þ
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dp
dt

¼pK4 1� K5
1þ p z

xðAþ p zÞ

� 	L

ðK2 þ pLÞ

" #
; ðA46Þ

where

K4 ¼ r
f� k
f

; ðA47Þ

K5 ¼
k

f� k
C6: ðA48Þ

By combining the prey and predator equations, we
obtain the system

dx
dt

¼ xE
Aþ p z

B1 þ p z þ C1

� 	
1

1þ xl

�

�C5
Aþ p z

B2 þ p z
þ C4

� 	
�
C7p
x


 1þ C6
1þ p z

xðAþ p zÞ

� 	L

ðK2 þ pLÞ

" #�1#
; ðA49Þ

dp
dt

¼ pK4 1� K5
1þ p z

xðAþ p zÞ

� 	L

ðK2 þ pLÞ

" #
: ðA50Þ

Finally, setting

C9 ¼
K4

E
ðA51Þ

and rescaling the time as T ¼ Et and thus dx=dt ¼
dx=dT dT=dt and dp=dt ¼ dp=dT dT=dt we obtain the
14-parameter system:

dx
dT

¼ x




"
Aþ p z

B1 þ p z
þ C1

� 	
1

1þ xl
� C5

Aþ p z

B2 þ p z
þ C4

� 	

�
C7p
x

1þ C6
1þ p z

xðAþ p zÞ

� 	L

ðK2 þ pLÞ

" #�1#
;

ðA52Þ

dp
dT

¼ pC9


 1� K5
1þ p z

xðAþ p zÞ

� 	L

ðK2 þ pLÞ

" #
: ðA53Þ
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